Answer Type Identification for Question Answering - Supervised Learning of Dependency Graph Patterns from Natural Language Questions
نویسندگان
چکیده
Question Answering research has long recognised that the identification of the type of answer being requested is a fundamental step in the interpretation of a question as a whole. Previous strategies have ranged from trivial keyword matches, to statistical analyses, to well-defined algorithms based on shallow syntactic parses with userinteraction for ambiguity resolution. A novel strategy combining deep NLP on both syntactic and dependency parses with supervised learning is introduced and results that improve on extant alternatives reported. The impact of the strategy on QALD is also evaluated with a proprietary Question Answering system and its positive results analysed.
منابع مشابه
SSL-QA: Analysis of Semi-Supervised Learning for Question- Answering
Open domain natural language question answering (QA) is a process of automatically finding answers to questions searching collections of text files. Question answering (QA) is a long-standing challenge in NLP, and the community has introduced several paradigms and datasets for the task over the past few years. These patterns differ from each other in the type of questions and answers and the si...
متن کاملارایه یک پیکره پرسش و پاسخ مذهبی در زبان فارسی
Question answering system is a field in natural language processing and information retrieval noticed by researchers in these decades. Due to a growing interest in this field of research, the need to have appropriate data sources is perceived. Most researches about developing question answering corpus area have been done in English so far, but in other languages as Persian, the lack of these co...
متن کاملQuestion Answering System Using Semantic Dependency Tree and State Graph
The basic architecture of a Question Answering System (QAs), based on Natural Language Processing, subsumes question analysis and answer extraction. The paper presents a system which is based on semantic analysis, relates the words logically and provides an admissible answer to the user query. Instead of using template based query, it accepts questions phrased in various forms. The question is ...
متن کاملدستهبندی پرسشها با استفاده از ترکیب دستهبندها
Question answering systems are produced and developed to provide exact answers to the question posted in natural language. One of the most important parts of question answering systems is question classification. The purpose of question classification is predicting the kind of answer needed for the question in natural language. The literature works can be categorized as rule-based and learning...
متن کاملA Graph-based Semi-Supervised Learning for Question-Answering
We present a graph-based semi-supervised learning for the question-answering (QA) task for ranking candidate sentences. Using textual entailment analysis, we obtain entailment scores between a natural language question posed by the user and the candidate sentences returned from search engine. The textual entailment between two sentences is assessed via features representing high-level attribute...
متن کامل